Mapping hybrid functional-structural connectivity traits in the human connectome
نویسندگان
چکیده
One of the crucial questions in neuroscience is how a rich functional repertoire of brain states relates to its underlying structural organization. How to study the associations between these structural and functional layers is an open problem that involves novel conceptual ways of tackling this question. We here propose an extension of the Connectivity Independent Component Analysis (connICA) framework, to identify joint structural-functional connectivity traits. Here, we extend connICA to integrate structural and functional connectomes by merging them into common “hybrid” connectivity patterns that represent the connectivity fingerprint of a subject. We test this extended approach on the 100 unrelated subjects from the Human Connectome Project. The method is able to extract main independent structural-functional connectivity patterns from the entire cohort that are sensitive to the realization of different tasks. The hybrid connICA extracted two main task-sensitive hybrid traits. The first, encompassing the within and between connections of dorsal attentional and visual areas, as well as frontoparietal circuits. The second, mainly encompassing the connectivity between visual, attentional, DMN and subcortical networks. Overall, these findings confirms the potential of the hybrid connICA for the compression of structural/functional connectomes into integrated patterns from a set of individual brain networks.
منابع مشابه
A Hybrid CPU-GPU Accelerated Framework for Fast Mapping of High-Resolution Human Brain Connectome
Recently, a combination of non-invasive neuroimaging techniques and graph theoretical approaches has provided a unique opportunity for understanding the patterns of the structural and functional connectivity of the human brain (referred to as the human brain connectome). Currently, there is a very large amount of brain imaging data that have been collected, and there are very high requirements ...
متن کاملConnectome-scale assessments of structural and functional connectivity in MCI.
Mild cognitive impairment (MCI) has received increasing attention not only because of its potential as a precursor for Alzheimer's disease but also as a predictor of conversion to other neurodegenerative diseases. Although MCI has been defined clinically, accurate and efficient diagnosis is still challenging. Although neuroimaging techniques hold promise, compared to commonly used biomarkers in...
متن کاملTowards the “Baby Connectome”: Mapping the Structural Connectivity of the Newborn Brain
Defining the structural and functional connectivity of the human brain (the human "connectome") is a basic challenge in neuroscience. Recently, techniques for noninvasively characterizing structural connectivity networks in the adult brain have been developed using diffusion and high-resolution anatomic MRI. The purpose of this study was to establish a framework for assessing structural connect...
متن کاملAdding dynamics to the Human Connectome Project with MEG
The Human Connectome Project (HCP) seeks to map the structural and functional connections between network elements in the human brain. Magnetoencephalography (MEG) provides a temporally rich source of information on brain network dynamics and represents one source of functional connectivity data to be provided by the HCP. High quality MEG data will be collected from 50 twin pairs both in the re...
متن کاملMapping the Connectome: Multi-Level Analysis of Brain Connectivity
AdvAnces in multi-level connectivity mApping Sophisticated neuroimaging techniques have opened up new possibilities to infer structural and functional connectivity at a macroscopic scale. Through measurement of oriented water diffusion restricted by cellular elements in the brain, non-invasive methods based on diffusion magnetic resonance imaging (dMRI, Figures 1A,B) play a key role in current ...
متن کامل